. cl as s - ph ] 9 M ar 1 99 9 Unified Descriptions Of All Integral Variational Principles

نویسندگان

  • A. M. Li
  • M. X. Shao
  • X. G. Li
چکیده

X iv :p hy si cs /9 90 30 15 v1 [ ph ys ic s. cl as sph ] 9 M ar 1 99 9 Unified Descriptions Of All Integral Variational Principles Y. C. Huang 1 A. M. Li M. X. Shao X. G. Li Department of Applied Physics, Beijing Polytechnic University, Beijing 100022, P. R. China Department of Physics, Beijing Normal University, Beijing 100082, P. R. China INFN, Sezione di Catania, Corso Italia 57, I-95129 Catania, Italy ( Email: [email protected] ) Abstract This paper shows the unified descriptions of the general, Hamilton, Voss, Hölder, Maupertuis-Lagrange variational principles of integral style, and finds the intrinsic relations among the different integral variational principles, it is proved that, under the condition of Eq.(7), f0= 0 is just the result satisfying the quantitative causal principle, the intrinsic relations among the invariant quantities and among the Noether conservation charges of the all integral and differential variational principles are found. Physical laws may be expressed by variational principle not only by differential formulas, in fact, differential formulas can be derived from variational principle, and there are the variational principles of differential and integral styles[1, 2]. The unified descriptions of the all differential variational principles are presented in Ref.[3]. Ref.[3] rigorously gives the expression of the quantitative causal principle in terms of the no-loss-no-gain principle in the Universe[4]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

s . cl as s - ph ] 2 4 A ug 1 99 9 Unified Expressions Of All Integral Variational Principles Based On The Quantitative Causal Principle

X iv :p hy si cs /9 90 30 15 v2 [ ph ys ic s. cl as sph ] 2 4 A ug 1 99 9 Unified Expressions Of All Integral Variational Principles Based On The Quantitative Causal Principle Y. C. Huang 1,2 A. M. Li M. X. Shao X. G. Li Department of Applied Physics, Beijing Polytechnic University, Beijing 100022, P. R. China ( Email address: [email protected] ) Institute of Theoretical Physics, Chinese Acad...

متن کامل

M ar 1 99 9 Unified Descriptions Of All Differential Variational Principles

X iv :p hy si cs /9 90 30 14 v1 [ ph ys ic s. cl as sph ] 8 M ar 1 99 9 Unified Descriptions Of All Differential Variational Principles Y. C. Huang Z. X. Liu X. G. Li Department of Applied Physics, Beijing Polytechnic University, Beijing 100022, P.R. China Department of Physics, Henan Normal University, Xingxiang 453002, P. R. China INFN, Sezione di Catania, Corso Italia 57, I-95129 Catania, It...

متن کامل

X iv : n uc l - th / 9 81 10 30 v 4 2 5 M ar 1 99 9 Anharmonic collective excitation in a solvable model

We apply the time-dependent variational principle, the nuclear field theory, and the boson expansion method to the Lipkin model to discuss anharmonicities of collective vibrational excitations. It is shown that all of these approaches lead to the same anharmonicity to leading order in the number of particles. Comparison with the exact solution of the Lipkin model shows that these theories repro...

متن کامل

ar X iv : c ha o - dy n / 99 06 00 4 v 1 3 1 M ay 1 99 9 Lagrangian Reduction , the Euler – Poincaré Equations , and Semidirect Products

There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the Lagrangian analogue of this process and link it with the general theory of Lagrangian reduction; that is the reduction of variational principles. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999